If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2.4x=56
We move all terms to the left:
x^2+2.4x-(56)=0
a = 1; b = 2.4; c = -56;
Δ = b2-4ac
Δ = 2.42-4·1·(-56)
Δ = 229.76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2.4)-\sqrt{229.76}}{2*1}=\frac{-2.4-\sqrt{229.76}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2.4)+\sqrt{229.76}}{2*1}=\frac{-2.4+\sqrt{229.76}}{2} $
| 5x^2+12x=280 | | 5n-4=5n-4 | | 8(x+4)=2(19+x) | | 2r–7=5 | | x+4/49=12/28 | | x(5-2x)=11 | | (x+4)+12=x | | 3p-p/4=11 | | 2x^2-3x-62=0 | | 4–2x+13=10–9x+7 | | 2x−5=8x−89 | | 3x-5=31-6x | | 12x–7=53 | | 16-(1/8)t=0 | | 6-10x+4x=-4-4(2-x) | | 3(7z+4)=74 | | 2(4-2p)=16 | | 0=12(x+1)+6x-48 | | 3x-10=-20-2x | | 2(4p-5)=14 | | 3x+2=-5+4x | | 6x+12=-118+7x | | 2m-5m=-15- | | 15x2-26x+8=0 | | 3c-3=4717839178748278941904858424735897819017894190485842473589781901789419048584247358978190178941904858424735897819017894190485842473589781901789419048584247358978190178941904858424735897819017894190485842473589781901789419048584247358978190178941904858 | | 9m-14=49m= | | 3c-3=471783917874827894190485 | | 3c-3=4717 | | 0,3=30/x | | 3x-4262=4924 | | 6y-14=49y= | | x/39=12 |